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Abstract

Stock returns are characterized by extreme observations, jumps that would not occur
under the smooth variation of a Gaussian process. We find that jumps are prevalent in most
countries. This has been little investigation of whether the jumps are internationally correlated.
Their possible inter-correlation is important for investors because international diversification is
less effective when jumps are frequent, unpredictable and strongly correlated. Public supervisors
may also mind about widely correlated jumps, as they could bring down certain financial
intermediaries. We investigate using daily returns on broad equity indexes from 82 countries and
for several statistical measures of jumps. Various jump measures are not in complete agreement
but a general pattern emerges. Jumps are internationally correlated but not as much as returns.
Although the smooth variation in returns is driven strongly by systematic global factors, jumps
are more idiosyncratic and most of them are found in Europe. Some pairs of correlated jumps
occur simultaneously but not to the extent of correlated returns.

JEL CLASSIFICATION: G11, G15
KEYWORDS: Diversification; Jumps; correlation



Non-Technical Summary

Stock returns exhibit jumps relative to the rather smooth variation typical of a normal
distribution. Jumps might be caused by sudden changes in the parameters of the conditional
return distribution, extreme events such as political upheavals in a particular country, shocks to
some important factor such as energy prices, global perturbation of recessions.

The ubiquity of jumps has important implications for investors, who must rely on
diversification for risk control. If jumps are idiosyncratic to particular firms or even countries,
they might be only a second-order concern. But if jumps are broadly systematic, unpredictable,
and highly correlated, diversification provides scant solace for even the best-diversified
portfolio. Jumps that affect broad markets are also headaches for policy makers such as financial
Supervisors.

Little has been previously documented about the international nature of jumps. To this
end, we compare their prevalence and severity across 82 countries. We did not weight to
countries and stock markets by their size and our jumps are not limited to political events and
natural disasters. While jumps do not span around the globe, many correlated jumps we found
occurred in the G-20 countries. We also tabulate calendar periods that had the most influence on
jump correlations and compare them with the most influential periods for return correlations.
We perform some robustness tests including simulation. Our general finding is that jumps are
less correlated across countries than raw returns. In other words, jumps are less systematic than
the smoother (non-jump) component of country price indexes. Almost all the monthly return
correlations are positive and almost 80% are statistically significant at the 1% level; this is for
3,321 individual correlation coefficients computed with returns from 82 countries. But jumps
are less correlated. For some of the jump measures, the correlation is very weak and is
statistically significant in only a few pairs of countries. This is based on the Barndorff-Nielsen
and Shephard (BNS) (2006) jump measure.! Simulations in Section 4 of our paper show that
BNS performs very well; it does not indicate the presence of correlated jumps when there are
actually none and it has good power to reject a false null hypothesis of no correlated jumps. A

few pairs of countries (which we identify) jumps are relatively idiosyncratic. This suggests that

' We also apply the other jump measures including Lee and Mykland (2008), Jiang and Oomen (2008), Jacod and
Todorov (2009). The results from applying these four jump measures remain intact.



jumps are mainly induced by country-specific events such as political events or natural
disasters.” They are not often induced by shocks to global factors such as energy or investor
confidence.

We also document two other interesting features of jumps: first, we display particular
calendar periods that contribute the most to international jump correlations. Perhaps
surprisingly, these are not usually the same months that are most influential for return
correlations, though again, there are some differences among the jump measures. Second, we
provide information on particular pairs of countries that are most influenced by extreme jumps.

Another surprise is that the most jump-correlated countries are larger and more developed
and are mainly in Europe. Because jumps are more correlated among European neighbors,
international diversification is less effective in that region. In contrast, jump co-movement is
uncommon among developing countries or in non-European developed countries. The rarity of
international correlation among jumps suggests they are mostly caused by local influences such
as political events and not by common global factors such as energy prices.

Although jumps are frequent in all countries and are probably hard to predict, they are not
as correlated internationally as returns themselves. Returns seem to be more driven by global
systematic influences while jumps are somewhat more idiosyncratic. Diversification might
provide reasonably satisfactory insurance against jumps; nonetheless, policy makers should not
be complacent from our results because future crises might be broad and be associated with

contagion.

% This conclusion is in full agreement with the recent paper by Lee (2012), who reports that U.S. jumps are mostly
attributable to events such as Federal Reserve announcements or initial jobless claims (which are mainly
idiosyncratic from a global perspective) or else are due to clearly idiosyncratic firm-specific events such as earnings
reports.



1 Introduction

Stock returns exhibit jumps relative to the rather smooth variation typical of a Gaussian
distribution.” Jumps might arise for a number of different reasons; to name a few: sudden
changes in the parameters of the conditional return distribution, extreme events such as political
upheavals in a particular country, shocks to some important factor such as energy prices, global
perturbation of recessions.

The ubiquity of jumps has important implications for investors, who must rely on
diversification for risk control. If jumps are idiosyncratic to particular firms or even countries,
they might be only a second-order concern. But if jumps are broadly systematic, unpredictable,
and highly correlated, diversification provides scant solace for even the best-diversified
portfolio. Eraker et al. (2003) find that the jumps command larger risk premiums than
continuous returns. Das and Uppal (2004) examine the portfolio choice problem of an
international investor when returns are categorized by jumps, leading to systemic risks. Using
monthly return data for a few developed markets, they measure diversification benefits and the
home bias. They do not consider a large number of markets and do not apply the jump
technology in their paper. Asgharian and Bengtsson (2006) find significant jumps in large
markets that lead to jumps in other markets. They conclude that markets in the same region and
with similar industry structures tend to experience jump contagion. Jumps might be more
prominent in emerging market returns where skewness and kurtosis are widely documented
(Bekaert, et al. (1998a, b).

Hartmann, Straetmans, and de Vries (2004) derive nonparametric estimates for the
expected number of market crashes given that at least one market crashes. Their approach does
not rely on a specific probability law for the returns and thus has an advantage over the often
used correlation. They apply their measure to study the comovements of stocks and government
bond markets during periods of stress. Instead of studying contagion or joint crashes of stocks,

they investigate the phenomena of flight to quality or a crash in stock markets followed by a

3 See, inter alia, Chernov, et al. (2003), Eraker, et al. (2003), and Huang and Tauchen (2005).



boom in government bond markets. Similar to Pukthuanthong and Roll (2009), they agree
correlation is not a good measure of market integration as it is predisposed toward the
multivariate normal distribution, which normally underestimates the frequency of extreme
market spillovers. Similar to this study, they conclude the financial market contagion
phenomenon may have been overestimated in the literature on financial crisis (see also Forbes
and Rigobon, 2002). Policymakers should not be complacent from these results since the next
crisis might be broad and associated with contagion. Poon, Rockinger and Tawn (2004) develop
tail dependence measure document the widespread asymptotic independence among stock
market returns, which has been ignored in the finance literature. The omission of asymptotic
independence can cause estimation errors of portfolio risk and thus suboptimal portfolio choice.
Consistent with the extant literature, they find dependence between volatilities is strong during
bear markets than in bull markets. Consistent with our study, the dependence between volatilities
has increased over time to produce asymptotically dependent stock markets within Europe but
still asymptotically independent stock markets among other regions. Hartmann, Straetmans, and
de Vries (2007) apply a multivariate extreme value techniques applied by Hartmann et al (2004)
and Poon et al (2004) to estimate the strength of banking system risks. Specifically, they apply
extreme value theory to evaluate the extreme dependence between bank stock returns and
measure banking system risk.

These studies apply the novel multivariate extreme value approach to assess the extreme
dependence between stock returns and to measure system risk. That is, they focus on crisis
propagations or relations between extremely large negative returns over time while we focus on
the simultaneous effects of common shocks or jumps on a single day. Our correlated jumps occur

in one single day and the jump measures are based on daily data. Moreover, we focus on price



jumps or discontinuities, which are narrower than the aforementioned studies. Jumps seem to be
an extreme case of crisis-type propagation. de Bandt and Hartmann (2010) provide a good
survey on systemic risk including theoretical models and empirical evidence.

Jumps that affect broad markets are also headaches for policy makers such as finance
ministers and central bankers. This is all the more true if jumps are significantly correlated
internationally, for policy makers will then find it necessary, albeit difficult, to coordinate their
reactions across countries.

We present evidence about the international co-movement of jumps across 82 countries.
Our general finding is that jumps are less correlated across countries than raw returns. In other
words, jumps are less systematic than the smoother (non-jump) component of country price
indexes. Except for a few pairs of countries (which we identify) jumps are relatively
idiosyncratic. This suggests that jumps are mainly induced by country-specific events such as
political events or natural disasters.* They are not often induced by shocks to global factors such
as energy or investor confidence. This is good news for international investors — diversification
provides reasonably satisfactory insurance against jumps. Policy makers should not be
complacent from our results because the future crisis might be broad and be associated with

contagion.

Little has been previously documented about the international nature of jumps. To this
end, we compare their prevalence and severity across countries. We also tabulate calendar
periods that had the most influence on jump correlations and compare them with the most
influential periods for return correlations. This provides an intuitive depiction of the frequency

and importance of jumps.

2 Data and Summary Statistics for Returns

2.1 Data

* This conclusion is in full agreement with the recent paper by Lee (2012), who reports that U.S. jumps are mostly
attributable to events such as Federal Reserve announcements or initial jobless claims (which are mainly
idiosyncratic from a global perspective) or else are due to clearly idiosyncratic firm-specific events such as earnings
reports.



Daily data are extracted for 82 countries from DataStream, a division of Thomson
Financial. The data consist of broad country indexes converted into a common currency (the US
dollar). Appendix A lists the countries, identifies the indexes, reports the time span of daily data
availability, and provides the DataStream mnemonic indicator (which could help in any
replication.) If the mnemonic contains the symbol “RI”, the index includes reinvested dividends;
otherwise, the index an average daily price.

Daily data availability extends back to the 1960s for a few countries but most joined the
database at a later time. The latest available date, when all the data were downloaded, is October
26, 2009 for all countries except Zimbabwe, (which closed its stock market after October 2006.)

Daily returns are calculated as log index relatives from valid index observations. An
index observation is not used if it exactly matches the previous reported day’s index. When an
index is not available for a given trading day, DataStream inserts the previous day’s value. This
happens whenever a trading day is a holiday in a country and also, particularly for smaller
countries, when the market is closed or the data are simply not available. Our daily returns are
thus filtered to eliminate such invalid observations.

Using the daily data for valid observations, calendar month and semiannual returns are
computed by adding together the (log) daily returns. The subsequent analysis uses these longer-
term returns, which also helps alleviate the effect of invalid daily observations. In order to be
included in the computations, a country must have at least ten valid monthly observation or 30

valid observations within a semester.

2.2 Summary statistics for return correlations

Simple product moment correlations are computed for each pair of countries. Summary
statistics for the correlations are reported in Table 1, Panel A for monthly correlations and Panel
B for semiannual. The number of observations depends on data availability. The maximum
number of months is 538, (e.g., Germany and the United Kingdom), and the minimum is eight,
(e.g., Greece and Zimbabwe.) Most pairs of countries have at least 100 concurrent monthly
observations and quite a few have several hundred. For semiannual periods, the maximum
number is 90 and the minimum is eight. Greece and Zimbabwe do not have enough concurrent

semiannual observations to compute a correlation.



As the table reveals, correlations are somewhat higher with semiannual than with
monthly returns; both the mean and median are higher by about 0.12.  Cross-country-pair
variation is only slightly higher for semiannual returns as indicated by the standard deviation and
the mean absolute deviation while the number of highly significant correlations is lower; this is
probably attributable to the lower sample sizes for semiannual data. There is no evidence of
skewness or kurtosis.

Table 2 provides a list of the single most influential observation for the return correlation
between each pair of countries. To obtain these results, we simply computed the de-meaned
product of returns that was the algebraically largest over all the available observations. The table
lists each influential period, the number of country pairs with data available for that period, and
the fraction of country pairs for which that particular period was the most influential. Periods are
omitted if their influential observations amounted to less than one percent of the available
correlations.

Perhaps the most striking aspect of Table 2 is the pronounced dominance of October
2008 for monthly data and the second semester of 2008 for semiannual data. For 3,240 monthly
correlation coefficients among the 82 countries, October 2008 was the single most influential
observation in 2,457, more than 75% of the cases. The second semester of 2008 was the most
influential in 87.1% of the 3,240 semiannual correlations. No other periods even come close.
The next most influential monthly observation is October 1987, with 16.9% of the 378
correlations available then. The next most influential semester was the second half of 1993, a

paltry 4.86% of the 1,378 available correlations.

3 International jump correlations

Our approach consists of two steps. First, we compute the Barndorff-Nielsen and
Shephard (2006, hereafter BNS) jump statistic “G” over a sequence of fixed-length calendar
periods within each country.” Second, for each pair of countries, we correlate the resulting BNS
G jump statistics across all available periods. The intuition is simple: if jumps are

contemporaneous and more intense simultaneously, the BNS jump statistics will be positively

> The BNS G statistic is based on the difference between “bipower” variation and squared variation; (See Appendix
B.) BNS also derive an H statistic based on the ratio of bipower to squared variation. The G and H statistics
provide vary similar inferences in all cases. Full details are available upon request.



correlated across time. Such jump correlations can conceivably have a very different pattern

than ordinary return correlations.

3.1 The Barndorff-Nielsen and Shephard (2006) statistic

For each country and each period k, either a calendar month or a semester, the BNS G
statistic is computed from the daily return observations during the period. The full tabulation of
results is available upon request.

The BNS G statistic is asymptotically unit normal under the null hypothesis of no jumps.
The alternative hypothesis, that one or more jumps has occurred, tends to make the BNS G
negative. Our results reveal that the average value of G is negative for every one of the 82
countries and all of the T-statistics for the sample mean G indicate significance, most being
highly significant. If the underlying returns are independently distributed across time, Barndorff-
Nielsen and Shephard show that their jump statistics are also time-series independent, so the T-
statistics should be fairly reliable.

Table 3 provides summary statistics for the BNS G measure computed over both monthly
and semiannual periods.® For example, the mean over 82 countries of the country mean BNS G
is -6.799 and the mean country standard deviation is 15.19. If there had been no jumps, the mean
and standard deviation should have been approximately zero and 1.0 on average. The country
average T-statistic is -5.232.

Similarly, the average skewness and kurtosis, (which would be approximately zero if
there were no jumps) are -5.177 and 47.160, both indicating dramatic departure from the
asymptotic normality that would arise under the null hypothesis of no jumps. Skewness is
negative for every country, which shows that some months during the sample have dramatically
smaller values of the jump measure than could be expected under the null; (recall that negative
values of G indicate jumps within the month.) The uniformly large values of kurtosis reveal

extreme value of G in some months.

%In these averages, measures that exceed 1,000 in absolute value are expunged because they are probably due to data
errors. For example, the January 1999 monthly G measure for Ghana is -202,343. In the original data, the Ghanian
price index changed only in the seventh significant digit every day in January until the last (typical successive values
are 426.8350, 426.8352, and so on, up and down.) Then, on the last day of January, the index shot up to 452.95. In
February, the index remained around 452.95 until the last day as well. It seems likely that no trades occurred on
most days in these months and the index changed only because of rounding error.



The individual monthly and semiannual maxima and minima also indicate the strongly
negative character of empirical BNS G measures. Very few individual jump measures are
positive and the maximum is less than one for both monthly and semiannual periods. The
minimum, in contrast, is orders of magnitude larger in absolute value.

BNS G measures based on semiannual observations are less significant because the
sample sizes are smaller. But all indications agree that a null hypothesis of no jumps should be
rejected for all countries. Evidently, jumps are ubiquitous.

Since Table 3 show clearly that jumps are happening all over the globe, the next step is to
ascertain how correlated they are across countries. To this end, using the calculated BNS G
computed for both months and semesters within individual countries, we compute two
international correlation matrices. Table 4 provides summary statistics from these two different
estimates of international jump correlations.

The international correlations of jump measures reported in Table 4 stand in stark
contrast with the return correlations reported earlier in Table 1. The jump measures are simply
not that correlated. The mean correlation coefficients are only around 0.01 to 0.03. Although
the means are supposedly statistically significant based on the T-statistic for the mean, only a
modest number of individual correlations have individual T’s greater than 2.0, between six and
seven percent of them. This differs dramatically from individual correlations among returns,
which Table 1 reports have T’s exceeding 2.0 in 60% to 80% of the cases.

This conclusion is further supported by Table 5, which gives influential months and
semesters for the correlations among jump measures. Unlike the influential periods for returns
(Table 2), there are no grossly dominant periods. The first semester of 1973 has the largest
percentage of influential observations, but only 21.9%, in contrast with the 87.1% of influential
observations exhibited by the second semester of 2008 for return correlations. Moreover, there
were many more available pairs during the second semester of 2008, 3,240, versus only 105 in
the first semester of 1973, so the dominance of 2008 is all the more impressive.

For monthly jump measures, Table 5 shows that no month reaches even a ten percent
level as being most influential. Notice also that the two most dominant months for returns,
October 2008 and October 1987, do not even appear in Table 5. Similarly, the second half of
2008, the main time of the recent financial “meltdown,” does not appear as significantly

contributing to semiannual jump correlations.
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Combining the results in Tables 3, 4, and 5, one can only conclude that jumps are
occurring in all countries but not usually at the same time. This is good news for investors
because it seems to suggest that diversification can be effective in protecting against extreme
movements in prices even though the smooth component of return variation is quite correlated
internationally. Evidently, jumps are much more idiosyncratic than normal variation.

Despite the weak international correlation among jumps, it could still be useful to
examine special cases of countries that exhibit somewhat more jump co-movement. Table 6
presents a list of country pairs whose jump correlations have T-statistics exceeding 3.0 for the
BNS G measure. Many of these seem intuitively plausible since they are close neighbors and
trading partners; indeed, quite a few pairs are countries within the European community.

There are some, however, that seem a bit odd, particularly for the jump measures
computed with semiannual data. Examples are Argentina, partnered with both Bangladesh and
Kuwait, or China partnered with Jordan, or Brazil with Lithuania. Perhaps some of these
oddities are simply attributable to randomness that is the inevitable companion of large-scale
data comparisons

Other cases might very well be worthy of a more in-depth investigation. For example,
are semiannual jumps correlated between Indonesia and Morocco because their religious faith
subjects them to occasional common shocks? Are Israel and Switzerland paired through
technology? What is the relation between Kuwait and Romania, South Korea and Sweden, or
Ecuador and the Philippines? It would be interesting to know the underlying reasons for such
connections, if indeed there are any.

Most countries provide good diversification protection against extreme movements in

prices. But there are a few exceptions such as those listed in Table 6.

3.2 Other jump statistics

In addition to the BNS jump statistic discussed in the previous section whose empirical
results are reported in Tables 3 to 6, we also investigated three other competing methods of jump
detection. These approaches were developed by Lee and Mykland (2008), Jiang and Oomen
(2008), and Jacod and Todorov (2009). All three are detailed in Appendix B, but since this is a

paper about finance and not about statistics and because of limited space, the associated
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empirical results are not reported in detail but are described briefly below. All results are
available upon request.

The Lee and Mykland (hereafter LM) statistic indicates slightly fewer jumps than the
Barndorft-Nielsen and Shephard (BNS) statistic but it agrees that jumps are occurring in every
one of our 82 countries. LM also indicates that a few countries have correlated jumps. In
11.50% of the bi-country comparisons, LM reveals significant jump correlation with a p-value of
0.05. This exceeds, though only modestly, what one would expect under the null hypothesis of
no jump dependence between any two countries. A majority of these significantly correlated
pairs involve countries in Europe. A total of 54 countries had their largest LM statistic in a
calendar month that was not shared by any other country. This suggests again that the most
extreme jumps are relatively isolated and idiosyncratic events.

The Jiang and Oomen (hereafter JO), statistic contrasts to some extent with BNS and LM.
Jump correlations based on JO are a bit larger on average, 0.134, and more statistically
significant. They are not as significant as correlations between returns but they are closer to
returns than the jump correlations for BNS and LM.

JO picks out a few of the same influential months as BNS; e.g., November 1978, and
January 1991 and 1994. But it also identifies October 1987 as the most influential jump month
of all and October 2008 as next most; these are months having the largest influence on return
correlations. It thus seems that the JO measure of jumps portrays them as more systematic,
though not to the same extent as returns, and less idiosyncratic as compared to the BNS and LM
measures. According the JO measure of jumps, extreme international correlations do not happen
for developing countries. Also, many significant country pairs are European, as they are for the
LM measure of extreme jump co-movements.

In agreement with the other statistics above, the Jacod and Todorov (hereafter JT) tests
suggest that international jumps are frequent. They are strictly idiosyncratic in more than half
the country pairs but they do occur jointly on occasion. There is also essential agreement with
respect to both the most influential months in the sample and on the pairs of countries that
exhibit the largest average values. No month stands out as being overwhelmingly influential; the
single most prominent month is September 2008, but it was largest for only 197 out of 3281 pairs

of countries. There are 45 pairs of countries with significant jump co-movements at the five
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percent level of significance. The majority of these (28) are European. Greece alone figures in

18 pairs.

3.3 Other tests we do not employ

While JT tests for cojumps in a pair of returns based on higher order power variation,
Gobbi and Mancini (2006, 2008) propose a strategy to separate the covariation between the
diffusive and jump components in a pair of returns. Using a related method, Bollerslev, Law,
and Tauchen (2008) do not test for cojumps between a particular pair of returns, but rather in the
cojumps embodied in a large ensemble of returns.

Ait-Sahalia and Jacod (2009) and Tauchen and Zhou (2010) propose nonparametric tests
for presence of price jumps based on high-frequency data. Also, more recently, Ait-Sahalia,
Cacho-Diaz, and Laeven (2010) model asset return dynamics with a drift component, a volatility
component, and mutually exciting jumps known as Hawkes processes. They use this approach to
capture adverse mutual shocks to stock markets, with a jump in one region of the world
propagating a different jump in another region of the world.

Bollerslev and Todorov (2011a) also focus on high-frequency data and use a threshold
approach to distinguish jumps from ordinary variation. In a related paper, Bollerslev and
Todorov (2011b) estimate risk premia that depend on the existence of jumps in both volatility
and prices, but they do not derive a separate estimator for jump detection within a sample period.

Of course, this paper would be unacceptably lengthy if every existing jump test were
thoroughly examined. Hence, we selected a single test (BNS) that seemed promising and is
relatively easy to implement. Most importantly, in the next section we employ simulations that

check the test power of BNS, and verify that it seems more than adequate for our application.

4 The Efficacy of Jump Measures for Detecting Correlated Jumps

Given the fact that jump statistics have not heretofore been used to assess the
international correlation of jumps, it is absolutely imperative that we develop some insight about
test power. Hence, this section represents an extremely important understructure for the overall
empirical approach. Here, we report simulations for which the true nature of correlated jumps is
known. We generate artificial data that has a smooth Gaussian variation, including non-zero

smooth correlation between the two bivariate return series, appended by artificial jumps of
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various sizes, frequencies, and co-movements. Using these artificial data, we study the efficacy
of the BNS jump measure for detecting correlated jumps. We also describe briefly the relative
efficacies of the other three jump statistics, LM, JO, and JT and we contrast their test power
graphically.

Without loss of generality, our simulated bivariate smooth Gaussian process is specified
to have mean zero and unit variance for both series plus a pre-specified correlation. Since the
average correlation in the monthly international return data is 0.314 (see Table 1, Panel A), we
take this as an upper bound because it is also influenced by jumps and not just by smooth
variation. In the simulations, we use a value in this general neighborhood, 0.30, and also two
smaller values, 0.15 and zero.

The simulated jumps are also Gaussian with mean zero but their strength is modeled by
specifying their standard deviation as a multiple (such as 5 or 15) of the underlying smooth
series, whose standard deviations are both 1.0. Also, jumps arrive randomly with particular but
rather small frequencies. For example, with a daily frequency of 0.02 and 21 trading days per
month, the probability of a jump occurring on some day during the month is 0.42. The jump
frequencies are studied over a range from very unlikely to very likely during each month. These
frequencies are applied independently to both simulated return series.

Conditional on a jump arriving in either series on a given day, there is also a specified co-
probability that the same jump will be transmitted to the other series. This co-probability is a
key parameter, because it specifies jump co-movement, the object of our study. In the
simulations, we allow it to vary from zero (no common jumps) to 0.999 (almost completely
common jumps.) Note that the two simulated series can also have common jumps during the
same month simply because of random arrivals, even though the jumps are not really common.
The co-probability simply increases their natural commonality.

In summary, there are four parameters that vary across simulations: (1) smooth
correlation, (2) jump strength, (3) jump frequency, and (4) jump co-probability. Other parameters
are held constant: the mean and volatility of the bivariate smooth returns, the type I error (5%),
and the number of replications for each parameter combination (1,000). We experimented with
different replication numbers but they all deliver essentially the same results.

Each simulation produces an entire probability distribution of the test statistic for

correlated jumps, but these numbers are too voluminous to report in their entirety. Instead, we
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report only a single indication of effectiveness, test power. When the jump co-probability is
positive in the simulated returns, (and hence there are genuinely correlated jumps), the test power
is the fraction of replications that reject the false null hypothesis of no jump co-movement. In
the special case when the co-probability is actually zero, and hence jumps are only randomly
common in the two simulated return series, the test power is the fraction of replications that
falsely reject the true null hypothesis of no jump co-movement.

As a base case, we first look at the computed test power when the jump frequency is zero
for both simulated return series. Since jumps cannot occur, they cannot be common across the
two series. Nonetheless, we compute test power in this case, which is essentially the probability
of falsely rejecting the true null hypothesis that there are no correlated jumps. The results are
plotted in Figure 1 for BNS, LM and JO.” When the smooth variation correlation is zero, the
BNS test provides appropriate results: i.e., at a 5% type I rejection level, it rejects (wrongly) in
the vicinity of five percent of the time.

As the smooth correlation increases, going from zero in the left panel to 0.15 in the center
panel and then to 0.30 in the right panel, the BNS test increases the incorrect rejection frequency
only slightly; i.e., it is behaving well.

With true co-movements in jumps, Table 7 reports some representative simulation
results. The table includes two values of the smooth variation correlation (zero and 0.15), two
values of jump strength, (5 and 15), two values of jump frequency (0.01 and 0.03), and three
values of the co-probability of jumps, (0.30, 0.60, and 0.90.) We actually produced simulation
results for a variety of other parameter values, but those in Table 7 provide a reasonable
depiction of the overall results.®

First notice that BNS seems to provide reasonably reliable results overall. Its test power
is higher with more intense jumps and with a higher level of jump co-movement between the two
simulated series. This is what one would hope to obtain in a test procedure. It is interesting
though, that test power seems to be lower when jumps are more frequent. At first, this might
seem surprising but on further reflection, it seems sensible for the following reason: really
frequent jumps are more or less akin to smooth variation but simply with a higher volatility. The

daily jump frequencies in Table 7 are 0.01 and 0.03, which imply monthly jump probabilities of

7 JT is discussed for this case below.
¥ The complete set of results for all parameter values will be provided to interested readers.
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at least 0.21 and 0.63, respectively. With a monthly probability of around 0.60, it is highly likely
that at least one of the two simulated return series will have a jump in a given month and this is
transferred to the other series with the specified co-probability. Evidently, the commonality that
is easiest to detect, at least by the BNS method, involves rather rare jumps.

In comparison to BNS, the LM test provides relatively weaker test power. Nonetheless,
the LM approach seems to have the appropriate pattern; it simply requires very strong and highly
correlated jumps to have much power.

The JO test has more power than the LM test at all levels of intensity, frequency, and co-
probability. However, it has less power than BNS throughout. Moreover, unlike BNS and LM,
it tends to detect jumps that do not exist. When there are no jumps, it incorrectly rejects the null
hypothesis (no jumps) about 40% of the time for the mid-range smooth correlation of 0.15 and
almost 90% of the time at the high end, a correlation of 0.30 (See Figure 1.) Jiang and Oomen
(JO) assert in their paper that their test is very sensitive to even small jumps. Evidently, even a
small amount of smooth correlation leads to an incorrect inference that there are common jumps.

The JT test never rejects the null hypothesis (no jumps) wrongly, even five percent of the
time; hence, it actually has too few rejections, the opposite of JO. However, for high jump
strength (15) and the high co-probability of jump transmission (0.90), the JT measure achieves
100% power. It is perfect. It does not perform as well when jump strength it lower; at a jump
strength of 5, its power is negligible unless the co-probability is very high. It does better when
the jump frequency is higher, ceteris paribus.

These results and comparisons are further illustrated in Figures 2 to 4. Figure 2 shows
test power for the four jump measures and high jump intensity across three levels of smooth
correlation. BNS has the highest power overall. The test powers of BNS, LM and JO do not
change much when the smooth correlation goes from zero to 0.30; (the latter value is in the same
general vicinity as the average smooth correlation in the international index returns.) However,
JT’s power increases dramatically, from around 10% to over 70%. In simulations, Jacod and
Todorov (2009, Section 6) also find that power is affected by the level of smooth correlation,
though the effect appears to be less dramatic than in our application here.

Figure 3 depicts the influence of jump strength. Again, BNS has good power throughout.
Its power exceeds 60% even at low levels of intensity (5) and it grows to 80% at an intensity of

10. Both LM and JO exhibit strongly increasing power with growing intensity and JO has the
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higher of these two at all levels but neither reaches the power of BNS. JT’s power is outstanding
and the best of all measures at higher jump intensities (10 and 15) but has only about 10% power
at an intensity of 5.

Finally, Figure 4 plots the power for each of the four jump measures against jump
frequency and jump co-movement probability. BNS, LM and JO have the pattern one would
expect, very low probability of incorrectly rejecting a true null hypothesis (when the co-
movement probability is zero) and increasing power against a false null hypothesis as the co-
movement probability increases from 0.30 through 0.999. However, when there is truly some
jump co-movement, BNS has higher power than LM and JO throughout; (the latter are similar.)
Notice too that power is generally better for rare jumps, when the frequency is lower, for BNS,
LM and JO. The pattern for JT is quite different. It has virtually no power until the co-
movement probability reaches 0.60 but it has the best power of all when this probability is 0.90
and above. Another contrast is that JT’s power is (slightly) better for higher jump frequencies.
The bottom line from these simulations turns out to be fairly clear-cut. BNS G, the Barndorftf-
Nielsen and Shephard difference jump measure, seems preferable overall for the explicit purpose
we have here, estimating the co-movement of jumps across international markets. It performs
well when there are no correlated jumps and it has acceptable power when there are many such
jumps. Although the LM and JO measures display a similar pattern, they have weaker power
when there are actually jumps. Moreover, JO (but not LM) incorrectly indicates the presence of
correlated jumps when there are actually none. JT has outstanding power at very high levels of

jump co-movement but performs poorly at lower levels.

5 A Simple Validity Check

To this point, our basic inference from the empirical results is that jumps, though
common in all countries, are mostly idiosyncratic and not very related across countries. This
suggests that any well-diversified portfolio should exhibit fewer jumps than any single country
considered alone.” This can be readily checked by constructing a globally diversified portfolio

and estimating the prevalence of jumps by using one of the measures studied above. Previously,

Bollerslev, Law, and Tauchen (2008) using the BNS measure, and Lee and Mykland (2008)

? We are grateful to Hanno Lustig for suggesting this idea.
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document more frequent and larger sized jumps for the individual stocks as compared to an
index.

We take the simplest possible approach by first constructing an equal-weighted global
portfolio from the available daily returns of the 82 countries listed in Table 1. Thus, the
constructed index is a simple average of the countries already investigated and covers the same
time period. Since the previous section’s simulations suggested that the BNS jump measure has
relatively sound properties, we adopt it for this validity check.

Table 8 presents the results. The first panel is copied from Table 3 and simply provides
summary statistics for individual countries. The second panel reports on the BNS G jump
measure for the global equal-weighted portfolio. The difference is indeed striking and
completely supports the notion that jumps are largely diversifiable. Notice that the mean value
of individual country BNS G measures is -6.799 while the equal-weighted index’ mean measure
is only -0.276. (Recall that large negative values of the BNS G measure reject the null
hypothesis of no jumps.)

Other comparisons in Table 8 also support the same inference. For example, the index
has much smaller standard deviation across months, only 0.787 versus 15.190 for countries on
average. The minimum monthly value for the index is -9.527 as compared to -102.100 for
countries.

Although the index displays much smaller jump measures, the average jump measure is
still significantly negative. The T-value for the sample mean is even larger than for individual
countries, -8.127 versus -5.232. This can be attributed to the index having more available
observations than countries having on average and also to the much smaller variance of the
index’ jump measure across months. The bottom line here is that jumps are largely diversified

away but not completely. Evidently, country jumps are mostly, but not entirely, idiosyncratic.

6 Conclusions

The extent of international correlation is very important for diversifying investors and
government officials attempting to coordinate policies across borders. In this paper, we examine
daily data for broad equity indexes from 82 countries and adopt several competing jump

measures suggested in previous papers.
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Returns are quite correlated internationally. Almost all the monthly return correlations
are positive and almost 80% are statistically significant at the 1% level; this is for 3,321
individual correlation coefficients computed with returns from 82 countries. But jumps are less
correlated. For some of the jump measures, the correlation is very weak and is statistically
significant in only a few pairs of countries. This is based on the Barndorff-Nielsen and Shephard
(BNS) (2006) jump measure. Simulations in Section 4 show that BNS performs very well; it
does not indicate the presence of correlated jumps when there are actually none and it has good
power to reject a false null hypothesis of no correlated jumps.

We also document two other interesting features of jumps: first, we display particular
calendar periods that contribute the most to international jump correlations.  Perhaps
surprisingly, these are not usually the same months that are most influential for return
correlations, though again, there are some differences among the jump measures. Second, we
provide information on particular pairs of countries that are most influenced by extreme jumps.

Another surprise is that the most jump-correlated countries are larger and more developed
and are mainly in Europe. Because jumps are more correlated among European neighbors,
international diversification is less effective in that region. In contrast, jump co-movement is
uncommon among developing countries or in non-European developed countries. The rarity of
international correlation among jumps suggests they are mostly caused by local influences such
as political events and not by common global factors such as energy prices.

Jumps estimated in our paper are jumps in equity returns, not real economic output or
returns of other financial assets. Second, jumps in our paper are different from true crises.
Although we find most jumps are not globally systematic, jumps are mostly found in Europe. A
jump is an event of sharp increase or decrease in equity returns whereas true crises or contagion
of downfall returns are a broader event. Our correlated jumps occur in a single day whereas
contagion captures a spread of downfall over time. Furthermore, our jump includes both positive
and negative jumps. We did not exclude positive jumps from our experiment. Future research
should exclude them and thus the findings will be applied only to true crises.

Moreover, our approach can be readily adapted to ascertain whether jumps are entirely
contemporaneous or whether they have a lead/lag relation on occasion. This interesting issue is

left for future research. The bottom line is a bit of good news for investors. Although jumps are
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frequent in all countries and are probably hard to predict, they are not as correlated
internationally as returns themselves.
Returns seem to be more driven by global systematic influences while jumps are

somewhat more idiosyncratic.
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Table 5
Influential periods for inter-country correlations of jumps using the BNS G measure

An influential observation is defined here as the single calendar period that contributes the most
to the correlation of jumps between countries. The Barndorff-Nielsen and Shephard (2006)
measures are calculated for each period and then correlated over time for all available pairs of
countries. For each listed period, the table contains the percentage of country pairs for which
that period was the single most influential contributor to the estimated jump correlation. To save
space, periods are excluded if there are fewer than 100 available pairs of countries or have less
than two percent of the most influential observations. The raw data are extracted from
DataStream, a division of Thomson Financial.

Month/Year Most Influential %
October/1973 3.810%
December/1974 2.500%
April/1975 2.941%
November/1978 8.824%
May/1980 2.632%
February/1983 4.211%
November/1983 6.667%
January/1991 6.554%
January/1994 2.155%
March/2009 2.161%

Semester/Year Most Influential %
1/1973 21.91%
1/1974 7.500%
1/1988 7.308%
1/1991 11.11%
1/1994 6.061%
2/2000 6.524%
1/2002 7.359%
1/2006 7.377%
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Table 6
Country pairs with large jump correlations according to the BNS G measure

The Barndorff-Nielsen and Shephard (2006) G measure is calculated for each period and then
correlated over time for all available pairs of countries. The pairs of countries listed here exhibit
jump measure correlations with T-statistics of at least 3.0. The raw data are extracted from
DataStream, a division of Thomson Financial.

Monthly Jumps Semiannual Jumps
Belgium France Argentina Bangladesh
Belgium Ireland Argentina Kuwait
Belgium Netherlands Austria Spain
Belgium Switzerland Bangladesh Kuwait
Brazil Lithuania Belgium Netherlands
Canada Sweden Belgium Switzerland
Estonia Israel Canada Sweden
Finland Romania Chile India
France Germany China Czech Republic
France Hungary China Jordan
France Italy Czech Republic Jordan
France Netherlands Denmark Nigeria
France United Kingdom Denmark Sweden
Germany Hungary Ecuador Philippines
Germany Italy Finland Ukraine
Germany Netherlands France Portugal
Hong Kong Norway Germany Netherlands
Hungary Norway Germany Switzerland
Israel Switzerland Ghana Luxembourg
Kenya Oman Ghana Mauritius
Netherlands Poland Hungary Poland
Netherlands Switzerland Hungary Spain
Netherlands United Kingdom Indonesia Morocco
Portugal Switzerland Kenya Oman
Romania Sweden Kuwait Oman
Slovenia Tunisia Kuwait Romania
South Korea Sweden Kuwait Sweden
Malta Nigeria
Netherlands Switzerland
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Table 7

Simulations to check the power of the BNS G test for
detecting correlated jumps

The G jump measure derived by Barndorff-Nielsen and Shephard (2006) is described in
Appendix B. Simulated bivariate returns have two components, a smooth Gaussian variation
with unit variance (for both bivariate returns) and a specified smooth correlation plus a Gaussian
jump component with specified frequency, intensity (strength), and co-movement probability,
“Co-Prob.” Jump intensity is in multiple units of the smooth variation volatility.

Smooth correlation = 0.00 Smooth Correlation = 0.15
Jump Jump Jump Test Jump Jump Jump Test
Strength | Frequency | Co-Prob Power Strength | Frequency | Co-Prob Power
5 0.01 0.30 27.90 5 0.01 0.30 29.60
5 0.03 0.30 26.60 5 0.03 0.30 26.10
5 0.01 0.60 52.40 5 0.01 0.60 55.10
5 0.03 0.60 43.50 5 0.03 0.60 42.80
5 0.01 0.90 65.90 5 0.01 0.90 69.50
5 0.03 0.90 57.20 5 0.03 0.90 52.80
15 0.01 0.30 44.90 15 0.01 0.30 43.90
15 0.03 0.30 29.10 15 0.03 0.30 29.70
15 0.01 0.60 76.10 15 0.01 0.60 77.90
15 0.03 0.60 49.70 15 0.03 0.60 47.80
15 0.01 0.90 89.90 15 0.01 0.90 90.00
15 0.03 0.90 74.10 15 0.03 0.90 73.20
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Figure 1

The probability of rejecting a true null hypothesis that there are no jumps in either of two
simulated return series. The two return series both have a smooth unit Gaussian variation and a
specified level of correlation. The underlying jump measures are those derived by Barndorft-
Nielsen and Shephard [2006] (BNS), Lee and Mykland [2008] (LM), Jiang and Oomen [2008]
(JO), and Jacod and Todorov [2009] (JT). The type I rejection level is 5%. Simulations have
1,000 replications.
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Figure 2

Smooth Correlation and Test Power Against a False Null Hypothesis of No Jump Co-Movement
for Jump Intensity = 15, Jump Frequency = 0.02, and Jump Co-Movement Probability = 0.90.
The two return series both have a smooth unit Gaussian variation and a specified level of
correlation. The underlying jump measures are those derived by Barndorff-Nielsen and
Shephard [2006] (BNS), Lee and Mykland [2008] (LM), Jiang and Oomen [2008] (JO), and
Jacod and Todorov [2009] (JT). The type I rejection level is 5%. Simulations have 1,000
replications.
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Figure 3

Jump Intensity and Test Power Against a False Null Hypothesis of No Jump Co-Movement for
Smooth Correlation = 0.15, Jump Frequency = 0.02, and Jump Co-Movement Probability = 0.90.
The two return series both have a smooth unit Gaussian variation and the specified level of
correlation (0.15). The underlying jump measures are those derived by Barndorff-Nielsen and
Shephard [2006] (BNS), Lee and Mykland [2008] (LM), Jiang and Oomen [2008] (JO), and
Jacod and Todorov [2009] (JT). The type I rejection level is 5%. Simulations have 1,000
replications.
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Appendix B
Jump Measures

1. Barndorff-Nielson and Shephard (2006)

Barndorff-Nielson and Shephard (2006), hereafter BNS, develop a test statistic based on
comparing bipower variation with squared variation. To understand their test, consider the
following notation (that we will adopt throughout the paper.)

t, subscript for day

Tk, the number of days in subperiod k

K, the total number of available subperiods

Rix, the return (log price relative including dividends, if any)

for asset i on day t in subperiod k

The BNS bipower and squared variations are defined as follows:

Bix, bipower variation,

R
Bi,k = Tk 1 ;| Ri,t,k [ Ri,t—l,k |

Sik, squared variation
1 & 2
Si,k = T_Z(Ri,t,k) .
k t=1
BNS propose two variants of the quadratic versus bipower variation measure, a
difference and a ratio. If the non-jump part of the process has constant drift and volatility, they
show that (1/2)Biy is asymptotically equal to the non-jump squared variation. Consequently, a
test for the null hypothesis of no jumps can be based on (7/2)Bix - Six, or (n/2)Bi/Six -1. Under
the null hypothesis, the standard deviations of this difference and ratio depend on the “quarticity”

of the process, which they show can be estimated by

1 &
3 2l R I Ruc Ry IR |

Qi,k =
Define the constant v = (n2/4) + 1 -5. Then the difference and ratio statistics,
G, = (nlz)Bi,k _Si,k

“ o ur2)Q,
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_ (m/2)( Bi,k / Si,k )—1

2, LQ;, / Biz,k

Hi,k

are both asymptotically unit normal.

These statistics have intuitive appeal because the squared variation (S;x) should be
relatively small if there is smooth variation, as with the normal distribution. On the other hand,
if the price jumps on some days, those jumps are magnified by squaring and the statistics above
should be small. Small values of G and H relative to the unit normal reject the null hypothesis of
no jumps.

From our perspective, these statistics also have the benefit that they can be computed
sequentially over calendar periods of various lengths.'”> For example, beginning with daily
observations, they can be computed monthly or semiannually for each asset. Subsequently, the
resulting monthly or semiannual statistics can be correlated across assets to detect whether jumps
are related. When the assets are broad country indexes, this provides the opportunity to test for
internationally correlated jumps. For example, to check whether countries j and i exhibit
correlated jumps, one can calculate the correlation over k = 1,... K between Gy and Gjy.

In previous papers, Huang and Tauchen (2005) and Andersen, Bollerslev, and Diebold
(2007) adopt the BNS method and develop a Z statistic for jumps using tri-power quarticity. The
latter paper also develops a “staggered” version of bi-power variation to tackle microstructure
noise that induces autocorrelation in the high-frequency returns. Zhang, Zhou, and Zhu (2009)
use the BNS method to identify jump risk of individual firms from high-frequency equity prices

in order to explain credit default swap premiums.

2. Lee and Mykland (2008)

Like BNS, Lee and Mykland (2008), (hereafter LM), base their test on bipower variation,
but it is employed differently. Bipower variation is used as an estimate of the instantaneous
variance of the continuous (non-jump) component of prices. LM recommend its computation

with data preceding a particular return observation being tested for a jump and the resulting test

'> There is a caveat. BNS assume that the non-jump part of the process has constant mean and volatility, which rules
out phenomena such as reductions in volatility with increasing prices, and vice versa. This should be only a minor
annoyance, though, when the calendar period is fairly short.
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Rirati 3

statistic is L = ¥2¢& . Under the null hypothesis of no jump at t+1, LM show that ¥

| bS]

L
converges to a unit normal.”” In addition, if there is a jump at t+1, ~

e B

is equal to a unit normal
plus the jump scaled by the standard deviation of the continuous portion of the process.

LM stress that high-frequency data minimizes the likelihood that a jump will be
misclassified. A test might fail to detect an actual jump at t+1 or it might spuriously “detect” one
at t+1 even though it has not occurred. Over a sequence of periods, tests might also fail to detect
any jumps even when one or more have occurred or they may falsely indicate that one or more
have occurred. LM provide explicit expressions for the probabilities of such misclassifications.

Unfortunately, we do not possess international stock index data at frequencies higher than
daily, so we will have to live with possible misclassifications. But since our purpose is mainly to
find evidence about the international correlation of jumps rather than the unambiguous
identification of a jump at a particular time, occasional misclassification is less of an issue. We
also finesse the problem to some extent by using a non-parametric enumeration of the test
statistic.

Since the LM test statistic has the return in the numerator, it would not be appropriate to
simply correlate it across countries. The resulting statistic would be polluted by the normal non-
jump correlation of returns. Instead, we first identify periods when the statistic is significantly
non-normal, thus indicating a likely jump. Using a simple contingency table test, we then

ascertain whether these periods are related across each pair of countries.

3. Jiang and Oomen (2008)

Jiang and Oomen (2008) (hereafter JO) devise a test inspired by the variance swap, a
contract whose payoff depends on the realized squared returns of an asset at a particular
frequency and over a specified horizon. They cite Neuberger (1994) for the continuous
replication strategy using a “log contract.” This leads to the idea of swap-based variation,

defined during period k with our usual notation as

" For short periods, the mean return is negligible and is ignored in the simplest version of the LM test.
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1 Tk ar n
SWi,k = _Z( Ri,t,k - Ril,t,k )
Tk t=1

where the new superscripts “ar” and “In” denote, respectively, the arithmetic return (Py/Py-1)
and the log return In(Py/Py.;) with Py as the price (or index value) at time t. The squared variation,
already earlier in the Appendix when introducing the BNS statistic, is compared with the swap
variation in several proposed test statistics based on SWix — Six, or In(SWix) — In(S;x), or a ratio
test based on 1 — S/ SWi,k.14

JO argue that these statistics are more sensitive to jumps than the BNS and LM statistics
described above because they exploit the influence of jumps on the third and higher order
moments rather than exclusively on the second moment. JO provide simulations that seem to
demonstrate that their statistic performs comparatively well.

Their theorem 2.1, p. 354, states that any of the proposed test statistics are asymptotically
normal with mean zero under the null hypothesis of no jumps during k. The variances of the
tests are unknown but can by estimated by multi-power variations that are consistent and robust
to jumps during the estimation period.

For our purpose of correlating jumps across international markets, we do not even need to
estimate the variances of the JO tests provided that the variance is constant over time, (though
different across countries.) Also, we use just the second of JO’s three proposed statistics,

involving logs of SW and S, simply on the grounds that logs attenuate outliers.

4. Jacod and Todorov (2009)

The tests devised by Jacod and Todorov (2009), hereafter JT, seem to perfectly fit our
goal here because they are explicitly intended to detect the common arrival of jumps in two time
series. JT actually develop two statistics, one for the null hypothesis that jumps arrive at the
same instant in both time series (“joint” jumps) and another for the null hypothesis that jumps
arrive in both time series but not at the same instant (“disjoint” jumps.)

Within a finite subperiod k, the first JT test asks whether Ri;x and Ry (1 # j) both
experience a jump on the same date t, for at least one t € k. Given a pair of countries, one can

compute the first JT test for a sequence of subperiods, k = 1,...,K, and tabulate the frequency of

'* Because JO intend their estimator for very high frequency data, the means are ignored. De-meaned data can be
used for lower frequency data.
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common jumps. This provides a measure of jump co-movement frequency. One can also use
the second test to measure the arrival frequency of disjoint jumps that arrive on different dates
but both within the same subperiod k.

The JT tests require that at least one jump occurs in both countries i and j in at least one
interval k = 1,...,.K. So, the first step in implementing their procedure is to throw out countries
that never experience a jump during the sample. The BNS statistics could be used for this
purpose. In other words, one could first compute the Gix and Gjx (or Hix and H;yx) according to
the expressions described above in the Appendix, check whether the means of both G’s (or both
H’s) fall below some pre-specified threshold, such as the .01 fractile of the unit normal, and
retain for the JT test only those pairs of countries for which the threshold is breached. For
monthly periods, this approach seems unnecessary because failure to reject both the “joint” and
the “disjoint” jump null hypotheses is tantamount to accepting the hypothesis that the month
contains no jump of any kind.

For month k, the monthly return is simply the sum of daily (log) returns,

T
Ri,k = Z Ri,t,k 5
t=1

denote as for country i and month k which contains Ty daily returns. Inserting our return
notation in JT s functional representation, we first define a functional sum as

[K/2] Am

V(.= f( Z(R”)J

m=1 I=A(m=1)+1
for integer 4 > 1, where [ . ] denotes the integer part or the argument and the function f(x) takes
on two forms: a cross-product, f;; = (Xij)2 and a quartic, g; = x;". For A= 1, V(f,1) is simply the
sum of the functions of individual monthly returns. For 4> 1, JT recommend the choices of A =
2 or A= 3; we will adopt the former and retain it throughout because this maximizes the number
of terms in the sum, i.e., in [K/4]. Consequently, in our application of the JT tests, the second
sum in V(f,2) will involve bi-monthly returns.

The JT test statistic for simultaneous (“joint”) jumps is given by

V(f,;2)

) _

MUV L)

and for “disjoint” jumps (non-simultaneous ones), the statistic is
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o _ V(D .
V(gL DV (gD

JT derive asymptotic properties for both statistics. When there are joint jumps, @Y

converges to a Gaussian with mean 1.0 and variance given by their equation 4.1, (p. 1800.)
When there are only joint jumps, ® also converges to 1.0, and it generally converges to a
positive value when there are both joint and disjoint jumps. When there are uniquely disjoint
jumps, @™ converges to zero and ® converges to 2.0. If there are no jumps at all, @ should

)

also converge to zero, so a test of @™ against a null hypothesis of zero (and perhaps @ against

a null hypothesis of 2.0) should be rejected when jumps are joint and thus not idiosyncratic.
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